35 research outputs found

    Low energy scales of Kondo lattices: mean-field perspective

    Full text link
    A review of the low temperature properties of Kondo lattice systems is presented within the mean-field approximation, focusing on the different characteristic energy scales. The Kondo temperature, T_K, and the Fermi liquid coherence energy, T_0, are analyzed as functions of the electronic filling, the shape of the non-interacting density of states, and the concentration of magnetic moments. These two scales can vanish, corresponding to a breakdown of the Kondo effect when an external magnetic field is applied. The Kondo breakdown can also be reached by adding a superexchange term to the Kondo lattice model, which mimics the intersite magnetic correlations neglected at the mean-field level.Comment: 17 pages, 9 figures. Proceedings of the NATO Advanced Research Workshop of Hvar, Croatia (2008

    Lifshitz transition in Kondo alloys

    Full text link
    We study the low energy states of Kondo alloys as function of the magnetic impurity concentration per site, x, and the conduction electron average site occupation, nc. Using two complementary approaches, the mean-field coherent potential approximation and the strong coupling limit, we identify and characterize two different Fermi liquid regimes. We propose that both regimes are separated by a Lifshitz transition at x = nc. Indeed, we predict a discontinuity of the number of quasiparticles which are enclosed in the Fermi surface. This feature could provide a scenario for the non-Fermi liquid properties that were recently observed in Kondo alloy systems around x = nc.Comment: 5 pages, 2 figure

    Kondo screening by the surface modes of a strong topological insulator

    Get PDF
    We consider a magnetic impurity deposited on the surface of a strong topological insulator and interacting with the surface modes by a Kondo exchange interaction. Taking into account the warping of the Fermi line of the surface modes, we derive a mapping to an effective one dimensional model and show that the impurity is fully screened by the surface electrons except when the Fermi level lies exactly at the Dirac point. Using an Abrikosov fermion mean-field theory, we calculate the shape of the electronic density Friedel oscillation resulting from the presence of the Kondo screening cloud. We analyze quantitatively the observability of a six-fold symmetry in the Friedel oscillations for two prototype compounds: Bi2_2Se3_3 and Bi2_2Te3_3.Comment: 22 pages, 6 figure

    An analysis of B_{d,s} mixing angles in presence of New Physics and an update of Bs -> K0* anti-K0*

    Full text link
    We discuss a simple approach to measure the weak mixing angles phi_s and phi_d of the Bs and Bd systems in the presence of New Physics. We present a new expression that allows one to measure directly the New Physics mixing angles if New Physics contributes significantly to the mixing only. We apply the method to specific penguin-mediated B->PP, B->PV and B ->VV modes. We provide a very stringent and simple bound on the direct CP asymmetries of all these modes, the violation of which is a signal of New Physics in decay. Within the same theoretical framework, an updated prediction for the branching ratio of Bs->K0* anti-K0* is presented, which can be compared with a recent LHCb analysis.Comment: 11 pages, 3 figure

    Mesoscopic Anderson Box: Connecting Weak to Strong Coupling

    Get PDF
    Both the weakly coupled and strong coupling Anderson impurity problems are characterized by a Fermi-liquid theory with weakly interacting quasiparticles. In an Anderson box, mesoscopic fluctuations of the effective single particle properties will be large. We study how the statistical fluctuations at low temperature in these two problems are connected, using random matrix theory and the slave boson mean field approximation (SBMFA). First, for a resonant level model such as results from the SBMFA, we find the joint distribution of energy levels with and without the resonant level present. Second, if only energy levels within the Kondo resonance are considered, the distributions of perturbed levels collapse to universal forms for both orthogonal and unitary ensembles for all values of the coupling. These universal curves are described well by a simple Wigner-surmise type toy model. Third, we study the fluctuations of the mean field parameters in the SBMFA, finding that they are small. Finally, the change in the intensity of an eigenfunction at an arbitrary point is studied, such as is relevant in conductance measurements: we find that the introduction of the strongly-coupled impurity considerably changes the wave function but that a substantial correlation remains.Comment: 17 pages, 7 figure

    3D Modulated Spin Liquid model applied to URu2_2Si2_2

    Get PDF
    We have developed a 3D version for the Modulated Spin Liquid in a body-centered tetragonal lattice structure to describe the hidden order observed in URu2_2Si2_2 at T017.5T_0\approx17.5 K. This second order transition is well described by our model confirming our earlier hypothesis. The symmetry of the modulation is minimized for Q(1,1,1){\bf Q}\equiv(1,1,1). We assume a linear variation of the interaction parameters with the lattice spacing and our results show good agreement with uniaxial and pressure experiments.Comment: 5 pages, 4 figure

    Metamagnetic transition in the two ff orbitals Kondo lattice model

    Full text link
    In this work, we study the effects of a transverse magnetic field in a Kondo lattice model with two ff orbitals interacting with the conduction electrons. The ff electrons that are present on the same site interact through Hund's coupling, while on neighboring sites they interact through intersite exchange. We consider here that part of ff electrons are localized (orbital 1) while another part (orbital 2) are delocalized, as it is frequent in uranium systems. Then, only electrons in the localized orbital 1 interact through exchange interaction with the neighboring ones, while electrons in orbital 2 are coupled with conduction electrons through a Kondo interaction. We obtain a solution where ferromagnetism and Kondo effect coexist for small values of an applied transverse magnetic field for T0T\rightarrow0. Increasing the transverse field, two situations can be obtained when Kondo coupling vanishes: first, a metamagnetic transition occurs just before or at the same time of the fully polarized state, and second, a metamagnetic transition occurs when the spins are already pointing out along the magnetic field.Comment: 15 pages, 7 figure

    From Weak- to Strong-Coupling Mesoscopic Fermi Liquids

    Get PDF
    We study mesoscopic fluctuations in a system in which there is a continuous connection between two distinct Fermi liquids, asking whether the mesoscopic variation in the two limits is correlated. The particular system studied is an Anderson impurity coupled to a finite mesoscopic reservoir described by random matrix theory, a structure which can be realized using quantum dots. We use the slave boson mean field approach to connect the levels of the uncoupled system to those of the strong coupling Nozi\`eres Fermi liquid. We find strong but not complete correlation between the mesoscopic properties in the two limits and several universal features.Comment: 6 pages, 3 figure

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio
    corecore